Abstract
We conducted laboratory experiments with Dabry's sturgeon, Acipenserdabryanus, from the upper Yangtze River to develop a conceptual model of early behavior. We daily observed fish from day-0 (embryo, first life interval after hatching) to day-30 feeding larva for preference of bright habitat and cover, swimming distance above the bottom, up- and down-stream movement, and diel activity. Hatchling to day-12 embryos and days 13–24 larvae were similar for ontogenetic behavior, i.e., neither initiated a dispersal migration, both swam within 15 cm of the bottom, both preferred bright habitat, and neither strongly preferred cover or open habitat. Embryos and larvae were weakly active day and night. Days 72–76 juveniles had a weak nocturnal downstream migration, indicating wild juveniles disperse from a spawning site. In other sturgeon species yet studied representing three genera on three continents, Dabry's sturgeon is the first that does not disperse as an embryo or larva. Development of Dabry's sturgeon is slow, requiring more cumulative temperature degree days per millimeter of larvae TL than is required for other sturgeons to develop into larvae. Thus, a dispersal migration that diverts energy from development may not be adaptive. The available information suggests the initial dispersal of early life intervals is likely done by females, which spawn in a dispersed spawning style, not the usual aggregated spawning style. Juvenile migrants had a black body and tail with a light line along the lateral scutes. The color of juvenile migrants shows that a dark body and tail is characteristic of Acipenser that migrate downstream as larvae or juveniles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have