Abstract

The abuse of antibiotics has raised the prevalence of antibiotic resistance, which will pose potential risk to human health. Leachate, generated during the landfill treatment of municipal solid waste, is the important hotspot of the antibiotics and antibiotic resistance genes (ARGs), and no effective on-site treatment has been put forward for preventing ARGs dissemination. Herein, the aged refuse bioreactor was employed to remove antibiotics and ARGs from leachate, and the great removal performance was observed. For the detected antibiotics, the total removal efficiency was about 76.75%, and sulfanilamide and macrolide were removed with high efficiencies (>80%). Among the target ARGs, tetracycline and macrolide resistance genes (tetM, tetQ and ermB) were eliminated with 1.2–2.0 orders of magnitude. The occurrences of ARGs did not correlated with water quality parameters such as COD, total nitrogen, ammonia, nitrate and nitrite, but closely linked to the variations of the bacterial community structure. Redundancy analysis (RDA) indicated the significant correlations between four genera and the distribution of ARGs, which implied that these key genera (including potential pathogens) drove the ARGs removal. Furthermore, the hydraulic loading test confirmed that the aged refuse bioreactor was capable of achieving high removal efficiencies even under shock loading for the higher loading was negative for the proliferations of potential ARGs hosts. This study suggested that aged refuse bioreactor could be a promising way for antibiotics and ARGs on-site removal from leachate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.