Abstract

The application of on-site produced cellulolytic enzymes in place of commercial enzymes towards hydrolytic preparations of reducing sugars using inexpensive lignocellulosic wastes is considered the most efficient strategy to accomplish a cost-effective biofuel production process. Along with improved production, intrinsic and systematic performance evaluation of the produced enzyme during the hydrolysis process through kinetic intervention remains a crucial requirement for achieving the improved performance of the process. With this motivation, the present study primarily deals with the nutritionally optimized production strategy of cellulases from rice straw (RS) waste using Trichoderma reesei (MTCC 164). The highest cellulase production was obtained 8.09 ± 0.32g/l in batch mode at optimized combinations of 3.5% (w/v) RS inducer, 3.0% (w/v) lactose, and 1.5% (w/v) peptone. Production was further improved through pH-regulated (pH 5.5 to 6.5) fed-batch fermentations. The enzyme produced at pH 6 was considered for hydrolysis studies at 4 to 10% (w/w) solid loading due to reasonable exoglucanase, endoglucanase, and maximum β-glucosidase activity levels of 9.3 U/ml, 3.87 U/ml, and 2.65 U/ml respectively. Multi-reaction systematic kinetic modeling was implemented to evaluate enzyme performance during hydrolysis, and the values of inhibitory kinetic parameters (K2r = 7.1 < K1r = 18.5 < K3r = 276.6) suggested that sequential conversion of cellulose to glucose by existing enzyme components was more dominant over direct conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call