Abstract

Whenever two irreversible processes occur simultaneously, time-reversal symmetry of microscopic dynamics gives rise, on a macroscopic level, to Onsager's reciprocal relations, which impose constraints on the number of independent components of any transport coefficient tensor. Here, we show that in the antiferromagnetic YbMnBi_{2}, which displays a strong temperature-dependent anisotropy, Onsager's reciprocal relations are strictly satisfied for anomalous electric (σ_{ij}^{A}) and anomalous thermoelectric (α_{ij}^{A}) conductivity tensors. In contradiction with what was recently reported by Pan etal. [Nat. Mater. 21, 203 (2022)NMAACR1476-112210.1038/s41563-021-01149-2], we find that σ_{ij}^{A}(H)=σ_{ji}^{A}(-H) and α_{ij}^{A}(H)=α_{ji}^{A}(-H). This equality holds in the whole temperature window irrespective of the relative weights of the intrinsic or extrinsic mechanisms. The α_{ij}^{A}/σ_{ij}^{A} ratio is close to k_{B}/e at room temperature but peaks to an unprecedented magnitude of 2.9k_{B}/e at ∼150 K, which may involve nondegenerate carriers of small Fermi surface pockets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.