Abstract

We describe a current-mode circuit for Gabor-type image filtering which uses a differential representation where positive (ON) and negative (OFF) signals are encoded using separate channels. Previous current-mode implementations represented positive and negative signals as variations around a constant bias at every pixel. However, this bias current has several disadvantages. First, variations in it introduce significant additive fixed pattern noise to the output. Second, it dissipates power even with zero input. Third, if the output is encoded using the address event representation, the bias current sets up a quiescent firing rate which loads the bus. The architecture proposed here alleviates these problems since a zero signal is encoded as nearly zero current in both channels. On the other hand, the transistor count and the address space are doubled. Measurements from a 1 by 25 pixel array with a cell size of 64 /spl mu/m by 540 /spl mu/m was fabricated in the AMI 1.5 /spl mu/m process available through MOSIS. Quiescent power dissipation was 5 /spl mu/W total.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.