Abstract

We introduce a new class of random “neural” networks in which signals are either negative or positive. A positive signal arriving at a neuron increases its total signal count or potential by one; a negative signal reduces it by one if the potential is positive, and has no effect if it is zero. When its potential is positive, a neuron “fires,” sending positive or negative signals at random intervals to neurons or to the outside. Positive signals represent excitatory signals and negative signals represent inhibition. We show that this model, with exponential signal emission intervals, Poisson external signal arrivals, and Markovian signal movements between neurons, has a product form leading to simple analytical expressions for the system state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.