Abstract
Serotonergic agonists may act neuroprotectively against brain injury. This study addressed the therapeutic potential of 8-hydroxy-2-di-n-propylamino-tetralin (8-OH-DPAT), a selective 5-HT1A/7 receptor agonist, after mechanical brain injury, and evaluated its effects in terms of acquisition of an allocentric place learning task in a water maze. Rats were divided into 6 experimental groups, three of which were subjected to bilateral transection of fimbria-fornix (FF), while three groups were given control surgery (Sham). After surgery, within both the lesioned, and sham-operated animals, respectively, one group was administered a single dose of saline, one group was given a single dose (0.5mg/kg/b.w.) of 8-OH-DPAT, and one group was treated with daily administration of 8-OH-DPAT (0.5mg/kg/b.w.) for eight days. The acquisition of the water maze based place learning task started on the 8th day post-surgery and continued for 20days. The results show that the lesioned group subjected to repeated administration of 8-OH-DPAT demonstrated a significantly improved acquisition of the place learning task compared to the vehicle injected lesion group. In contrast, the lesioned group treated with a single administration displayed impaired performance compared to the baseline lesion group. There were no significant effects of the 8-OH-DPAT administration in the sham control groups. We conclude that only the repeated stimulation of the 5-HT1A/7 system was associated with beneficial, recovery enhancing effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have