Abstract

Consider the following one-player game. The vertices of a random graph on n vertices are revealed to the player one by one. In each step, also all edges connecting the newly revealed vertex to preceding vertices are revealed. The player has a fixed number of colors at her disposal, and has to assign one of these to each vertex immediately. However, she is not allowed to create any monochromatic copy of some fixed graph F in the process.For n → ∞, we study how the limiting probability that the player can color all n vertices in this online fashion depends on the edge density of the underlying random graph. For a large family of graphs F, including cliques and cycles of arbitrary size, and any fixed number of colors, we establish explicit threshold functions for this edge density. In particular, we show that the order of magnitude of these threshold functions depends on the number of colors, which is in contrast to the corresponding offline coloring problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.