Abstract
Fog computing (FC) has the potential to process computation-intensive tasks in Industrial Internet of Things (IIoT) systems. In parallel with the development of FC, non-orthogonal multiple access (NOMA) has been recognized as a promising technique to significantly improve the spectrum efficiency. In this paper, a NOMA-based FC framework for IIoT systems is considered, where multiple task nodes offload their tasks via NOMA to multiple nearby helper nodes for execution. We formulate a joint task scheduling and subcarrier allocation problem, with an objective to minimize the total cost in terms of the delay and energy consumption, while taking into account the practical communication and computation constraints. Note that the task scheduling includes task, computation resource, and power allocations. Since the task and subcarrier allocations involve binary variables, it is challenging to obtain an optimal solution for such a combinatorial problem. To this end, we solve the task scheduling and subcarrier allocation problem in an online learning fashion. During the online learning process, we propose an iterative algorithm to jointly optimize the subcarrier allocation and task scheduling in each time episode. Simulation results show that the proposed scheme can significantly reduce the sum cost compared to the baseline schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.