Abstract

This article concerns an online packet scheduling problem that arises as a natural model for buffer management at a network router. Packets arrive at a router at integer time steps, and are buffered upon arrival. Packets have non-negative weights and integer deadlines that are (weakly) increasing in their arrival times. In each integer time step, at most one packet can be sent. The objective is to maximize the sum of the weights of the packets that are sent by their deadlines. The main results include an optimal (ϕ := (1 + √ 5)/2 ≈ 1.618)-competitive deterministic online algorithm, a (4/3 ≈ 1.33)-competitive randomized online algorithm against an oblivious adversary, and a 2-speed 1-competitive deterministic online algorithm. The analysis does not use a potential function explicitly, but instead modifies the adversary's buffer and credits the adversary to account for these modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.