Abstract

This paper proposes an effective kernel generalized likelihood ratio test (KGLRT) technique for fault detection in Photovoltaic (PV) systems. The proposed technique is considered as an improvement of the conventional KGLRT with extended online capabilities and lower computational complexity. The proposed online reduced KGLRT (OR-KGLRT) is based on transforming the process data into a higher dimensional space (where the data becomes linear), which makes the kernel-based scheme attractive for modeling nonlinear systems. The performance of the proposed method is evaluated and compared to the conventional KGLRT statistic using a simulated PV data. Both techniques are applied to detect single and multiple failures (including Bypass, Mismatch, Mix and Shading failures). The selected performance criteria are the good detection rate (GDR), false alarm rate (FAR), and computation time (CT). Simulation results show superior detection efficiency of the proposed approach compared to the conventional KGLRT statistic in terms of GDR, FAR and CT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.