Abstract
This paper proposes an online predictive control method for fixed-wing unmanned aerial vehicles (UAVs) with a pan-tilt camera in target tracking. It aims to achieve long-term tracking while concurrently maintaining the target near the image center. Particularly, this work takes the UAV and pan-tilt camera as an overall system and deals with the target tracking problem via joint optimization, so that the tracking ability of the UAV can be improved. The image captured by the pan-tilt camera is the unique input associated with the target, and model predictive control (MPC) is used to solve the optimization problem with constraints that cannot be performed by the classic image-based visual servoing (IBVS). In addition to the dynamic constraint of the UAV, the perception constraint of the camera is also taken into consideration, which is described by the maximum distance between the target and the camera. The accurate detection of the target depends on the amount of its feature information contained in the image, which is highly related to the relative distance between the target and the camera. Moreover, considering the real-time requirements of practical applications, an MPC strategy based on soft constraints and a warm start is presented. Furthermore, a switching-based approach is proposed to return the target back to the perception range quickly once it exceeds the range, and the exponential asymptotic stability of the switched controller is proven as well. Both numerical and hardware-in-the-loop (HITL) simulations are conducted to verify the effectiveness and superiority of the proposed method compared with the existing method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.