Abstract

Porous graphic carbon chromatography (PGC) has a different mechanism in the retention of tryptic peptides compared with reversed-phase chromatography and in this study we show that coupling PGC with tandem mass spectrometry offer advantages for the quantitation of phosphorylation stoichiometry and characterization of site-specific glycosylation. Digests of protein standards (horse myoglobin, bovine fetuin and β-casein) were analyzed with a capillary liquid chromatography/tandem mass spectrometry (LC/MS/MS) system by coupling an Agilent 1100 HPLC system to a Synapt G2-Si HDMS (Waters). Peptides were separated using a HyperCarb PGC column (300 μm i.d. × 100 mm) packed with 3 μm particles. MS/MS data were collected in data-dependent mode and three MS/MS scans were acquired after the full MS scan. RAW data were transformed to .mgf by PLGS (Waters) and searched against the Swissprot database by Mascot. Chromatograms and MS/MS spectra of identified compounds were extracted with Masslynx (Waters) and imported to Origin for analysis. Glycan composition and peptide sequence were manually annotated. PGC/MS/MS enabled accurate quantitation of the stoichiometry of specific phosphorylation sites from β-casein by efficient separation of the phosphopeptide and its non-phosphorylated counterpart, which cannot be achieved by reversed-phase chromatography. PGC/MS/MS also enabled comprehensive characterization of protein sialoglycosylation as isomeric glycopeptides with different combinations of α2-3- and α2-6-linked sialic acids can be separated and the ratios of each combination were verified by exoglycosidase digestion. PGC has demonstrated superior separation of peptides with phosphorylation and glycosylation and can be used as an alternative in the proteomic characterization of post-translational modifications (PTMs) by polar groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.