Abstract

Antiproliferative factor (APF) is a low molecular weight sialoglycopeptide that is secreted by bladder cells from interstitial cystitis patients and is a potent inhibitor of both normal bladder epithelial and bladder carcinoma cell proliferation. We hypothesized that APF may produce its antiproliferative effects by binding to a transmembrane receptor. This study demonstrates that cytoskeleton-associated protein 4/p63 (CKAP4/p63), a type II transmembrane receptor, binds with high affinity to APF. The antiproliferative activity of APF is effectively inhibited by preincubation with anti-CKAP4/p63-specific antibodies, as well as by short interfering RNA knockdown of CKAP4/p63. Immunofluorescent confocal microscopy showed co-localization of anti-CKAP4/p63 and rhodamine-labeled synthetic APF binding in both cell membrane and perinuclear areas. APF also inhibits the proliferation of HeLa cervical carcinoma cells that are known to express CKAP4/p63. These data indicate that CKAP4/p63 is an important epithelial cell receptor for APF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.