Abstract
This paper addresses the problem of multi-object tracking in complex scenes by a single, static, uncalibrated camera. Tracking-by-detection is a widely used approach for multi-object tracking. Challenges still remain in complex scenes, however, when this approach has to deal with occlusions, unreliable detections (e.g., inaccurate position/size, false positives, or false negatives), and sudden object motion/appearance changes, among other issues. To handle these problems, this paper presents a novel online multi-object tracking method, which can be fully applied to real-time applications. First, an object tracking process based on frame-by-frame association with a novel affinity model and an appearance update that does not rely on online learning is proposed to effectively and rapidly assign detections to tracks. Second, a two-stage drift handling method with novel track confidence is proposed to correct drifting tracks caused by the abrupt motion change of objects under occlusion and prolonged inaccurate detections. In addition, a fragmentation handling method based on a track-to-track association is proposed to solve the problem in which an object trajectory is broken into several tracks due to long-term occlusions. Based on experimental results derived from challenging public data sets, the proposed method delivers an impressive performance compared with other state-of-the-art methods. Furthermore, additional performance analysis demonstrates the effect and usefulness of each component of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.