Abstract
Online multi-object tracking is one of the crucial tasks in time-critical computer vision applications. In this paper, the problem of online multi-object tracking in complex scenes from a single, static, un-calibrated camera is addressed. In complex scenes, it is still challenging due to frequent and prolonged occlusions, abrupt motion change of objects, unreliable detections, and so on. To handle these difficulties, this paper proposes a four-stage hierarchical association framework based on online tracking-bydetection strategy. For this framework, tracks and detections are divided into several groups depending on several cues obtained from association results with the proposed track confidence. In each association stage, different sets of tracks and detections are associated to handle the following problems simultaneously: track generation, progressive trajectory construction, track drift and fragmentation. The experimental results show the robustness and effectiveness of the proposed method compared with other state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.