Abstract
When several subjects solve the assignment problem of two sets, differences on the correspondences computed by these subjects may occur. These differences appear due to several factors. For example, one of the subjects may give more importance to some of the elements’ attributes than another subject. Another factor could be that the assignment problem is computed through a suboptimal algorithm and different non-optimal correspondences can appear. In this paper, we present a consensus methodology to deduct the consensus of several correspondences between two sets. Moreover, we also present an online learning algorithm to deduct some weights that gauge the impact of each initial correspondence on the consensus. In the experimental section, we show the evolution of these parameters together with the evolution of the consensus accuracy. We observe that there is a clear dependence of the learned weights with respect to the quality of the initial correspondences. Moreover, we also observe that in the first iterations of the learning algorithm, the consensus accuracy drastically increases and then stabilises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.