Abstract

We study the repeated, nonatomic congestion game, in which multiple populations of players share resources and make, at each iteration, a decentralized decision on which resources to utilize. We investigate the following question: given a model of how individual players update their strategies, does the resulting dynamics of strategy profiles converge to the set of Nash equilibria of the one-shot game? We consider in particular a model in which players update their strategies using algorithms with sublinear discounted regret. We show that the resulting sequence of strategy profiles converges to the set of Nash equilibria in the sense of Cesaro means. However, convergence of the actual sequence is not guaranteed in general. We show that it can be guaranteed for a class of algorithms with a sublinear discounted regret and which satisfy an additional condition. We call such algorithms AREP (approximate replicator) algorithms, as they can be interpreted as a discrete-time approximation of the replicator equat...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call