Abstract
Among other solution concepts, the notion of the pure Nash equilibrium plays a central role in Game Theory. Pure Nash equilibria in a game characterize situations with non-cooperative deterministic players in which no player has any incentive to unilaterally deviate from the current situation in order to achieve a higher payoff. Unfortunately, it is well known that there are games that do not have pure Nash equilibria. Furhermore, even in games where the existence of equilibria is guaranteed, their computation can be a computationally hard task. Such negative results significantly question the importance of pure Nash equilibria as solution concepts that characterize the behavior of rational players. Approximate pure Nash equilibria, which characterize situations where no player can significantly improve her payoff by unilaterally deviating from her current strategy, could serve as alternative solution concepts provided that they exist and can be computed efficiently. In this letter, we discuss recent positive algorithmic results for approximate pure Nash equilibria in congestion games.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.