Abstract

To solve the problem of lacking efficient and dynamic resource allocation schemes for 5G Network Slicing (NS) in Cloud Radio Access Network (C-RAN) scenario in the existing researches, a virtual resource allocation algorithm for NS in virtualized C-RAN is proposed. Firstly, a stochastic optimization model in virtualized C-RAN network is established based on the Constrained Markov Decision Process (CMDP) theory, which maximizes the average sum rates of all slices as its objective, and is subject to the average delay constraint for each slice as well as the average network backhaul link bandwidth consumption constraint in the meantime. Secondly, in order to overcome the issue of having difficulties in acquiring the accurate transition probabilities of the system states in the proposed CMDP optimization problem, the concept of Post-Decision State (PDS) as an intermediate state” is introduced, which is used to describe the state of the system after the known dynamics, but before the unknown dynamics occur, and it incorporates all of the known information about the system state transition. Finally, an online learning based virtual resource allocation algorithm is presented for NS in virtualized C-RAN, where in each discrete resource scheduling slot, it will allocate appropriate Resource Blocks (RBs) and caching resource for each network slice according to the observed current system state. The simulation results reveal that the proposed algorithm can effectively satisfy the Quality of Service (QoS) demand of each individual network slice, reduce the pressure of backhaul link on bandwidth consumption and improve the system throughput.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call