Abstract

In an online k-server routing problem, a crew of k servers has to visit points in a metric space as they arrive in real time. Possible objective functions include minimizing the makespan (k-Traveling Salesman Problem) and minimizing the sum of completion times (k-Traveling Repairman Problem). We give competitive algorithms, resource augmentation results and lower bounds for k-server routing problems in a wide class of metric spaces. In some cases the competitive ratio is dramatically better than that of the corresponding single server problem. Namely, we give a 1+O((log k)/k)-competitive algorithm for the k-Traveling Salesman Problem and the k-Traveling Repairman Problem when the underlying metric space is the real line. We also prove that a similar result cannot hold for the Euclidean plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.