Abstract

With the development of wireless network technology, the transformation of educational concepts, the upgrading of users' educational needs, and the transformation of lifestyles, online education has made great strides forward. However, due to the rapid growth of online education in my country, many regulatory systems have not kept pace with the development of online education, resulting in low user experience and satisfaction with online education. The establishment of a user satisfaction model is beneficial for attracting attention and thinking about research in the field of online education service quality, assisting enterprises in recognizing the specific impact of various factors in services, accelerating service quality improvement, and assisting in the formulation of industry norms and improving enterprise competitiveness, all of which help students acquire knowledge more easily. In the era of big data, traditional satisfaction evaluation methods have many drawbacks, so more and more machine learning methods are applied to satisfaction evaluation models. This paper takes the research of machine learning algorithm as the core to carry out the research work, uses the cost-sensitive idea to improve the decision tree, considers the cost of different types of classification errors, and uses the random forest principle to integrate the generated decision tree, thereby improving the accuracy of the model. The model has better stability, and the validity of the model is verified by experiments. For a follow-up in-depth investigation of online education satisfaction rating technology, the linked work of this paper has certain reference and reference value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.