Abstract

In test-based problems, commonly approached with competitive coevolutionary algorithms, the fitness of a candidate solution is determined by the outcomes of its interactions with multiple tests. Usually, fitness is a scalar aggregate of interaction outcomes, and as such imposes a complete order on the candidate solutions. However, passing different tests may require unrelated "skills," and candidate solutions may vary with respect to such capabilities. In this study, we provide theoretical evidence that scalar fitness, inherently incapable of capturing such differences, is likely to lead to premature convergence. To mitigate this problem, we propose disco, a method that automatically identifies the groups of tests for which the candidate solutions behave similarly and define the above skills. Each such group gives rise to a derived objective, and these objectives together guide the search algorithm in multi-objective fashion. When applied to several well-known test-based problems, the proposed approach significantly outperforms the conventional two-population coevolution. This opens the door to efficient and generic countermeasures to premature convergence for both coevolutionary and evolutionary algorithms applied to problems featuring aggregating fitness functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.