Abstract

To probe an accurate diagnosing approach for synchronous generator (SG) with rotor winding inter-turn short-circuit, a novel online monitoring and detecting method relying on the [Formula: see text]-support vector regression ([Formula: see text]-SVR) machine was proposed, and its effectiveness was further verified by the micro-synchronous generator dynamic simulation. Terminal voltage, active and reactive power of SG were selected as input variables for a novel prediction model based on the [Formula: see text]-SVR, and field current was selected as an output variable of the prediction model. The structures and parameters of the field current prediction model were optimized with the particle swarm optimization (PSO) algorithm and training samples, then the prediction model was established and the field current prediction got under way. By comparing the predicted field current with the corresponding online measured field current, inter-turn short-circuit of rotor winding in SG could be detected sensitively once its absolute value of the prediction relative error exceeded a specific threshold. The micro-synchronous generator dynamic simulation indicated that the proposed online detecting approach based on the [Formula: see text]-SVR machine overcame the shortage of the back-propagation (BP) diagnosis method for misdiagnosis, and its accuracy, sensitivity and threshold setting range of the diagnosis method was the most prominent among these diagnosis methods such as the BP diagnosis method, the Bayesian regularization back-propagation (BRBP) diagnosis method and the [Formula: see text]-support vector regression ([Formula: see text]-SVR) diagnosis method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call