Abstract

The aim of this study was to introduce a powerful coupling of Liquid Adsorption Chromatography (LAC) and Diffusion-Ordered Spectroscopy (DOSY) for comprehensive structure analysis. This new hyphenation approach facilitated the simultaneous separation of a polymer mixture and the determination of molar masses within a single 3D experiment. The online coupling of High-Performance Liquid Chromatography (HPLC) and two-dimensional DOSY-NMR will be called 3D-LAC-NMR-DOSY experiment. Our methodology enabled the chromatographic separation of analytes based on their chemical heterogeneity, and provided accurate molar masses of the analytes through 2D-DOSY. This new method was demonstrated on a polystyrene oligomer mixture. In this case, the oligostyrenes could be separated with LAC according to their tacticity and chain length in protonated acetonitrile as eluent and DOSY measurements provided the molar masses of each oligomer. In order to show the power of the 3D-LAC-NMR-DOSY method, the comparison to 2D-DOSY, 3D-DOSY and LAC-NMR was separately evaluated. Furthermore, the recently published solvent-independent molar mass calibration of diffusion coefficients was also successfully applied in our LAC-DOSY studies for molar mass predictions of the oligomers in acetonitrile. The predicted molar masses were in good agreement with the LAC-DOSY measurements and were verified by calibrations of diffusion coefficients and mass spectrometry. Finally, this pioneering 3D technique offers a powerful new tool for advancing structure analysis and enhancing our understanding of complex systems such as oligostyrenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call