Abstract
Intention recognition through decoding brain activity could lead to a powerful and independent Brain-Computer-Interface (BCI) allowing for intuitive control of devices like robots. A common strategy for realizing such a system is the motor imagery (MI) BCI using electroencephalography (EEG). Changing to invasive recordings like electrocorticography (ECoG) allows extracting very robust features and easy introduction of an idle state, which might simplify the mental task and allow the subject to focus on the environment. Especially for multi-channel recordings like ECoG, common spatial patterns (CSP) provide a powerful tool for feature optimization and dimensionality reduction. This work focuses on an invasive and independent MI BCI that allows triggering from an idle state, and therefore facilitates tele-operation of a humanoid robot. The task was to lift a can with the robot's hand. One subject participated and reached 95.4 % mean online accuracy after six runs of 40 trials. To our knowledge, this is the first online experiment with a MI BCI using CSPs from ECoG signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.