Abstract

This paper formulates the problem of online charging and routing of a single electric vehicle in a network with stochastic and time-varying travel times. Public charging stations, with nonidentical electricity prices and charging rates, exist through the network. Upon arrival at each node, the traveler learns the travel time on all downstream arcs and the waiting time at the charging station, if one is available. The traveler aims to minimize the expected generalized cost—formulated as a weighted sum of travel time and charging cost—by considering the current state of the vehicle and availability of information in the future. The paper also discusses an offline algorithm by which all routing and charging decisions are made a priori. The numerical results demonstrate that cost savings of the online policy, compared with that for the offline algorithm, is more significant in larger networks and that the number of charging stations and vehicle efficiency rate have a significant impact on those savings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.