Abstract

This paper has proposed an electric vehicle (EV) route selection and charging navigation optimization model, aiming to reduce EV users’ travel costs and improve the load level of the distribution system concerned. Moreover, with the aid of crowd sensing, a road velocity matrix acquisition and restoration algorithm is proposed. In addition, the waiting time at charging stations is addressed based on the queue theory. The formulated objective of the presented model is to minimize the EV users’ travel time, charging cost or the overall cost based on the time of use price mechanism, subject to a variety of technical constraints such as path selections, travel time, battery capacities, and charging or discharging constraints, etc. Case studies are carried out within a real-scale zone in a city where there are four charging stations and the IEEE 33-bus distribution system. The effects of real-time traffic information acquisition and different decision targets on EV users’ travel route and effects of charging or discharging of EVs on the load level of the distribution system are also analyzed. The simulation results have demonstrated the feasibility and effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.