Abstract

Employing semi-empirical models to estimate some characteristics of a fuel cell (FC) stack, such as power and polarization curves, is demanded for efficient design of a power allocation strategy in a FC hybrid electric vehicle. However, the multivariate nature of a FC system has made the design of an accurate model challenging. Since each semi-empirical model has its own pros and cons, this paper puts forward a data fusion approach for online characteristics estimation of a FC stack utilizing four well-known models, namely Mann, Squadrito, Amphlett, and Srinivasan. Despite the other similar techniques, the suggested one utilizes the strengths of each mentioned FC model while avoiding their drawbacks. Kalman filter is employed to identify the parameters of the models online to embrace the uncertainties caused by the alteration of operating conditions and degradation level. Considering the parameters, the output voltage given by each model as well as their covariance are computed. Then, a covariance intersection algorithm is proposed to fuse the estimated output voltages. The fusion of the models’ outputs leads to the estimation of fused characteristics curves. To underline the effectiveness of the proposed method, it is applied to four different experimental datasets extracted from three 500-W Horizon FCs. The obtained results demonstrate the superior performance of the suggested estimator in the sense of mean square error. On average, the mean square error of the data fusion method is 39.64% and 36.59% lower than other studied methods while estimating the polarization curve and power curve, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.