Abstract
This paper presents a novel calibration method that equalizes the impulse responses of all the Radio Frequency (RF) modules of an antenna array system operating in Long-Term Evolution (LTE) evolved NodeB (eNB). The proposed technique utilizes the Zadoff-Chu (Z-C) sequence of the Primary Synchronization Signal (PSS) and Sounding Reference Signal (SRS) that are available in every LTE data frame for downlink and uplink, respectively, for estimating and compensating the differences in the impulse responses among the RF modules. The proposed calibration method is suitable for wide bandwidth signal environments of LTE because it equalizes the impulse response of each RF module, which is ultimately equivalent to compensate the phase and amplitude differences among RF modules for the entire frequency band. In addition, the proposed method is applicable while the target eNB is transmitting or receiving a data stream. From various experimental tests obtained from a test-bed implemented with 2 RF modules, it has been verified that the proposed method provides a reliable calibration for Release 10 Time Division Duplex (TDD) LTE signals. Phase errors after the calibration in our test-bed have been found to be about 2.418° and 2.983° for downlink and uplink, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.