Abstract

Multi-person tracking in videos is a promising but challenging visual task. Recent progress in this field is introducing deep convolutional features as appearance models, which achieves robust tracking results when coupled with proper motion models. However, model failures that often cause severe tracking problems, have not been well discussed and addressed in previous work. In this paper, we propose a solution by online detecting such failures and accordingly adjusting the coupling between appearance and motion models. The strategy is letting the functional models take over when certain model faces data association ambiguity, and at the same time suppressing the influence of inappropriate observations during model update. Experimental results prove the benefit of our proposed improvement. Multiple object tracking; deep neural network; online learning; tracking-by-detection; multiple hypothesis tracking (key words)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.