Abstract
In this study, we propose a multiple vehicle tracking method using multiple hypotheses and the appearance model. The multiple hypotheses are associated with multiple tracks using track-to-multiple hypotheses association method. A target state is estimated using the maximum a posteriori probability estimation method. The posterior probability is proportional to the product of a priori probability and the likelihood that is calculated using similarities of multiple hypotheses and the appearance model. The posterior probability density function is estimated using the Markov chain Monte Carlo particle filter. An optimal posterior target state is determined using a sample with the maximum a posteriori probability. Our experimental results show that the proposed method can improve multiple objects tracking precision as well as multiple object tracking accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.