Abstract

AbstractProton exchange membrane fuel cells (PEMFCs) are promising candidates for clean and efficient power sources. Zeolite nanoparticle membranes have been introduced as potential new membrane materials to improve the performance of PEMFCs. Understanding the proton transport mechanism on zeolite nanoparticle membranes at the atomic level is crucial in developing more efficient PEMFCs. We investigated the influence of aluminium to initiate proton transfer within zeolite fragments by performing geometry conformation of hydrated propylsulfonic acid‐functionalized zeolite ZSM‐5 clusters from one to six water molecules using four different ONIOM schemes; ONIOM(B3LYP:HF) and ONIOM(B3LYP:PM3) in gas phase and within polarizable continuum model (PCM) of water system. Results show that four water molecules are required for second proton dissociation to occur in Al systems, whereas at least five water molecules are needed in their counterpart systems. Analysis of the results suggests that the presence of Al atom in the zeolite backbone increases the electronegativity of the oxygen atom of the sulfonic acid. The oxygen provides an active site for the acidic proton to participate and increased the ability of hydrogen to dissociate itself and form hydronium cations. Our ONIOM calculation proves that ONIOM(B3LYP:PM3) method of calculation provides a reliable result with minimal computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.