Abstract
Investigation of tautomerism and transition states in a derivative of 1,3,4-oxadiazole (A, B, C and D) in the gas phase and in solution and in a micro hydrated environment with 1–3 water molecules was performed by calculations at the DFT-B3LYP/6-311++G(d,p) level of theory. The solvent effect is taken into account via the self-consistent reaction field (SCRF) method. The geometries of four possible tautomers of 5-amino-1,3,4-oxadiazole-2(3H)-one were optimized in the gas phase and solution with polarized continuum model (PCM). It was found that in the gas phase and different solvents, A and C tautomers are the most stable and unstable forms, respectively.The results show that the tautomeric interconversion C to D has the lowest Gibbs free energy changes and so the highest equilibrium constant in the gas phase and solution. The equilibrium and rate constants of intermolecular tautomerism in the absence and presence of 1–3 molecules of water were also calculated. The calculated results show that the presence of water molecules considerably reduces the barrier energy of the various reactions. Therefore, this water-assisted tautomerism can be performed fast, especially, with the assistance of two molecules of water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.