Abstract

Habitat fragmentation caused by damming can greatly reduce the population viability of aquatic organisms, with smaller fragmented populations at higher risk of extinction due to increased demographic, genetic, and environmental stochasticity. However, empirical evidence demonstrating that smaller natural populations are more vulnerable to extinction is limited. We studied the vulnerability to extinction of white-spotted charr (Salvelinus leucomaenis) populations in 30 dammed-off streams in Oshima Peninsula, southwestern Hokkaido Island, Japan, by comparing the incidence of charr populations in streams between 1999 and 2014. Using electrofishing and environmental DNA surveys, we identified three localized extinctions, with the probability of extinction increasing with decreasing watershed area (our surrogate for habitat size). We also found a new population in one dammed-off stream in which white-spotted charr were previously unknown, after installation of a fish ladder, indicating the capacity of white-spotted charr to recolonize reconnected habitat in a short period. Our results suggest that localized extinction of white-spotted charr in small dammed-off streams is ongoing, but that appropriate fish migration corridors can reduce localized extinction risk and increase the probability of species persistence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call