Abstract
While the increase of computer power mobilizes a part of the atmospheric modeling community toward models with explicit convection or based on machine learning, we review the part of the literature dedicated to convective parameterization development for large-scale forecast and climate models. Many developments are underway to overcome endemic limitations of traditional convective parameterizations, either in unified or multiobject frameworks: scale-aware and stochastic approaches, new prognostic equations or representations of new components such as cold pools. Understanding their impact on the emergent properties of a model remains challenging, due to subsequent tuning of parameters and the limited understanding given by traditional metrics. Further effort still needs to be dedicated to the representation of the life cycle of convective systems, in particular their mesoscale organization and associated cloud cover. The development of more process-oriented metrics based on new observations is also needed to help quantify model improvement and better understand the mechanisms of climate change.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have