Abstract
Toll-like receptor 2 (TLR2) is implicated in inflammatory responses to high-fat diet (HFD)–induced obesity in rodents, but human HFD studies examining TLR2-mediated immune responses are lacking. Our aim was to determine whether HFD affected TLR2 function in humans. We hypothesized that a short-term HFD in humans would impair TLR2-mediated immune function. Fasting blood samples were obtained from healthy young men (N = 9) before and after a 7-day HFD. Toll-like receptor 2 function was assessed in ex vivo whole blood cultures stimulated with the TLR2 agonist N-palmitoyl-S-[2,3-bis[palmitoyloxy]-[2RS]-propyl]-[R]-cysteinyl-[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysine (Pam3-Cys-SK4). Peripheral blood mononuclear cells (PBMCs) were isolated to examine TLR2, TLR4, and p47 subunit of nicotinamide adenine dinucleotide phosphate oxidase (p47phox) protein expression via Western blotting. Pam3-Cys-SK4–stimulated secretion of interleukin-1β (−35%, P = .005), interleukin-6 (−32%, P = .01), and tumor necrosis factor–α (−33%, P = .06) was reduced following the HFD. High-fat diet resulted in decreased TLR2 (P = .049) and p47phox (P = .037) protein expression from PBMCs. To mimic lipid overload ex vivo, follow-up experiments were performed in whole blood cultures exposed to a mixture of free fatty acids for 24 hours; and surface protein expression of TLR2 and TLR4 on CD14+ monocytes was measured by flow cytometry. Free fatty acid exposure for 24 hours ex vivo reduced monocyte TLR2 levels by about 20% (P = .028). A 7-day HFD in young healthy men resulted in impaired TLR2 function. Decreased TLR2 and p47phox protein expression in PBMCs, possibly due to excess free fatty acids, may mediate this response. Our current findings indicate that impaired TLR2 response after HFD might be partially responsible for increased risk of infection in diet-induced obesity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have