Abstract

A series of new biochar-supported composite based on the combination of biochar and metallic nanoparticles (NPs) were produced through single-step pyrolysis of FeCl3–Ti(OBu)4 laden agar biomass under NH3 environment. The physiochemical properties of composites were characterized thoroughly. It has found that heating temperature and N-doping through NH3-ambiance pyrolysis significantly influence the visible-light sensitivity and bandgap energy of composites. The catalytic activities of composites were measured by degradation of Methylene Blue (MB) in the presence or absence of H2O2 and visible-light irradiation. Our best catalyst (N–TiO2–Fe3O4-biochar) exhibits rapid and high MB removal competency (99.99%) via synergism of adsorption, photodegradation, and Fenton-like reaction. Continuous production of O2− and OH radicles performs MB degradation and mineralization, confirmed by scavenging experiments and degradation product analysis. The local trap state Ti3+, Fe3O4, and N-carbon of the catalyst acted as active sites. It has suggested that the Ti3+ and N-doped dense carbon layer improve charge separation and shuttle that prolonged photo-Fenton like reaction. Moreover, the catalyst is highly stable, collectible, and recyclable up to 5 cycles with high MB degradation efficiency. This work provides a new insight into the synthesis of highly visible-light sensitized biochar-supported photocatalyst through NH3-ambiance pyrolysis of NPs-laden biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.