Abstract
A Nd:YAG pulsed laser was used to ablate a 0.5-mm-diameter iron wire in a sealed chamber in a mixed gas flux of N 2 and O 2 to generate pure γ-Fe 2O 3 nanoparticles at atmospheric pressure. Structural characteristics and sizes of the prepared nanoparticles were determined by X-ray diffraction and TEM. The effects of laser power density, total mixed gas pressure and the oxygen ratio on the mean particle size were investigated, respectively. The results showed that the mean particle size decreased with the increase of the laser power density, total gas pressure and the oxygen ratio, respectively. Besides, the nanoparticle formation mechanism by laser ablation of iron wires was also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.