Abstract
Simultaneous exfoliation of crystalline α-zirconium phosphate (α-ZrP) nanosheets and enzyme binding, induced by shearing, without the addition of any toxic additives is reported here for the first time. These materials were thoroughly characterized and used for applications. The bulk α-ZrP material (20 mg mL-1) was exfoliated with low concentrations of a protein such as bovine serum albumin (BSA, 3 mg mL-1) in a shear reactor at 10k rpm for <80 minutes. Exfoliation was monitored by powder X-ray diffraction with samples displaying a gradual but complete loss of the 7.6 Å (002) peak, which is characteristic of bulk α-ZrP. The fully exfoliated sample loaded with the protein was characterized by transmission and scanning electron microscopy in addition to other biophysical methods. Lysozyme, glucose oxidase, met-hemoglobin, and ovalbumin also induced exfoliation and directly produced enzyme/ZrP biocatalysts. Thus, exfoliation, biophilization and enzyme binding are accomplished in a single step. Several factors contributed to the exfoliation kinetics, and the rate increased with α-ZrP and BSA concentrations and decreased with pH. However, the exfoliation efficiency inversely depended on the isoelectric point of the protein with ovalbumin (pI = 4.5) being the best and lysozyme (pI = 11.1) being the worst. A strong correlation between the protein size and exfoliation efficiency was noted, and the latter suggests the role of hydrodynamic factors in the process. Exfoliation was also achieved by simple stirring using a magnetic stirrer, under low volumes, and model enzymes, indicating 60-90% retention of bound enzymatic activities. The addition of BSA to enzymes as the diluent and stabilizing agent also prevents enzymes from the denaturing effect caused by stirring. This new method requires no pre-treatment of α-ZrP with toxic exfoliating agents such as tetrabutyl ammonium hydroxide and provides bioactive enzyme/inorganic materials in a single step. These protein-loaded biocompatible nanosheets may be useful for biocatalysis and biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.