Abstract

This chapter reports a single-step preparation of nanoarmored bi-enzyme systems assembled on 1-D and 2-D nanomaterials, with glucose oxidase and peroxidase enzymes as model systems for cascade bio-catalysis. This is a simple and facile method to both exfoliate the bulk 1D (carbon nanotubes, CNT) and 2D nanomaterials (α-Zirconium phosphate, α-ZrP) and bind the enzymes in a single step. Exfoliation of the bulk material enhances the accessible surface area of the materials for the enzyme binding, and it also boosts the diffusion of reagents from the bulk phase to the active sites of the bio-catalysts. For example, a mixture of horseradish peroxidase, glucose oxidase, and bovine serum albumin (BSA) were adsorbed on the surfaces of the α-ZrP nanoplates or carbon nanotubes (CNT) as the bulk materials are exfoliated simultaneously, in a one-step process. The resultingbio-catalysts were thoroughly characterized by powder X-ray diffraction, electron microscopy, biochemicaland biophysical methods, while enzyme activity studies proved successful binding of enzymes with retention of activities or even enhancements in their specific activities. For example, GOx/HRP/BSA/CNT displayed 6 times the activity of a mixture of GOx/HRP/BSA, under otherwise identical conditions. Similarly, GOx/HRP/BSA/ZrP had 3.5 times the activity of the corresponding mixture of GOx/HRP/BSA, in the absence of the nanoplates. These robust nano-dispersions worked extraordinarily well as active bio-catalysts. These two kinds of fabricated biocatalyst dispersions are also highly stable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.