Abstract

The aim of the study was to evaluate the effect of a ceramic primer and its increased passive application on the fatigue performance of adhesively cemented lithium disilicate simplified restorations. Ceramic discs (Ø = 10 mm; thickness = 1.0 mm) were submitted to an in-lab simulation of CAD/CAM milling and allocated into 8 groups (n = 15), considering 2 factors: “surface treatment”– PRIMER, only coupling agent application (Monobond N); HF5+PRIMER, 5% hydrofluoric acid and coupling agent; E&P 20s + 40s and E&P 20s+5min, ceramic etching/priming (Monobond Etch & Prime, E&P) for 20 s of active application followed by 40 s or 5 min of passive application, respectively; and “aging condition”– baseline, storage for 24 h to 5 days; aged, storage for 90 days +12,000 thermal cycles. Adhesive cementation (Multilink N) was performed onto epoxy discs (Ø = 10 mm; thickness = 2 mm) and the cemented assemblies were subjected to step-stress fatigue tests (initial load of 200 N; step-size of 50 N; 10,000 cycles per step; 20 Hz). The results showed that the groups had similar fatigue performance in the baseline condition (except for E&P 20s+5min: 940.0 N; 123,000 cycles > PRIMER: 786.7 N; 92,333 cycles). When aged, the PRIMER group presented the worst fatigue performance (480.8 N; 31,154 cycles) compared to the other groups (810.0–840.0 N; 97,000–103,000 cycles). In addition, only the PRIMER treatment showed unstable fatigue performance (baseline > aged). Therefore, ceramic surface treatment promoting micromechanical interlocking and chemical bonds is mandatory for stable fatigue performance of adhesively cemented lithium disilicate restorations. The one-step ceramic primer/conditioner promoted similar fatigue performance to the 5% hydrofluoric acid + coupling agent, but increased E&P etching time did not improve the fatigue behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call