Abstract

If {S n ,n≧0} is an integer-valued random walk such that S n /a n converges in distribution to a stable law of index α∈ (0,1) as n→∞, then Gnedenko’s local limit theorem provides a useful estimate for P{S n =r} for values of r such that r/a n is bounded. The main point of this paper is to show that, under certain circumstances, there is another estimate which is valid when r/a n → +∞, in other words to establish a large deviation local limit theorem. We also give an asymptotic bound for P{S n =r} which is valid under weaker assumptions. This last result is then used in establishing some local versions of generalized renewal theorems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.