Abstract
In this paper, we develop a general approach to proving global and local uniform limit theorems for the Horvitz–Thompson empirical process arising from complex sampling designs. Global theorems such as Glivenko–Cantelli and Donsker theorems, and local theorems such as local asymptotic modulus and related ratio-type limit theorems are proved for both the Horvitz–Thompson empirical process, and its calibrated version. Limit theorems of other variants and their conditional versions are also established. Our approach reveals an interesting feature: the problem of deriving uniform limit theorems for the Horvitz–Thompson empirical process is essentially no harder than the problem of establishing the corresponding finite-dimensional limit theorems, once the usual complexity conditions on the function class are satisfied. These global and local uniform limit theorems are then applied to important statistical problems including (i) $M$-estimation, (ii) $Z$-estimation and (iii) frequentist theory of pseudo-Bayes procedures, all with weighted likelihood, to illustrate their wide applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.