Abstract

In this paper, we propose OneQ, the first optimizing compilation framework for one-way quantum computation towards realistic photonic quantum architectures. Unlike previous compilation efforts for solid-state qubit technologies, our innovative framework addresses a unique set of challenges in photonic quantum computing. Specifically, this includes the dynamic generation of qubits over time, the need to perform all computation through measurements instead of relying on 1-qubit and 2-qubit gates, and the fact that photons are instantaneously destroyed after measurements. As pioneers in this field, we demonstrate the vast optimization potential of photonic one-way quantum computing, showcasing the remarkable ability of OneQ to reduce computing resource requirements by orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.