Abstract
AbstractSurface terminations of two‐dimensional MXene (Ti3C2Tx) considerably impact its physicochemical properties. Commonly used etching methods usually introduce ‐F surface terminations or metallic impurities in MXene. We present a new molten‐salt‐assisted electrochemical etching method to synthesize fluorine‐free Ti3C2Cl2. Using electrons as reaction agents, cathode reduction and anode etching can be spatially isolated; thus, no metallics are present in the Ti3C2Cl2 product. The surface terminations can be in situ modified from −Cl to −O and/or −S, which considerably shortens the modification steps and enriches the variety of surface terminations. The obtained −O‐terminated Ti3C2Tx are excellent electrode materials for supercapacitors, exhibiting capacitances of 225 F g−1 at 1.0 Ag−1, good rate performance (91.1 % at 10 Ag−1), and excellent capacitance retention (100 % after 10000 charge/discharge cycles at 10 Ag−1), which is superior to multi‐layered Ti3C2Tx prepared by other etching methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.