Abstract

In this work, the concept of entropy based on probability is applied in modeling the vertical distribution of velocity in open channel turbulent flow. Using the principle of maximum entropy, one-dimensional velocity distribution is derived by maximizing the Renyi entropy subject to some constraints by assuming dimensionless velocity as a random variable. The Renyi entropy-based equation is capable of modeling the velocity distribution from the channel bed to the water surface. The derived velocity distribution is tested with field and laboratory observations and is also compared with existing entropy-based velocity distributions. The present model has shown good agreement with observed data and its prediction accuracy is superior than the other existing models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.