Abstract
To predict the vertical distribution of streamwise fluid velocity and suspended sediment concentration profiles in an open channel turbulent flow, we derive a theoretical model here based on the Reynolds averaged Navier–Stokes equation and the mass conservation equations of solid and fluid phases. The model includes the effects of secondary current in terms of the vertical velocity of fluid, additional vertical velocity of fluid due to the suspended particles, mixing length of sediment-laden flow and settlement of the suspended particles due to gravitational force. We numerically solve our model as coupled differential equations and the obtained solution agrees well with a wide spectrum of experimental data. A detailed error analysis asserts the superior determination accuracy of our model in comparison to the traditional log-law and Rouse equation and other existing theoretical models. The significance of the turbulent features included in the model and the importance of their co-existence to compute velocity and concentration profiles are explained. In sharp contrast to the previous researchers, the present model has significant contribution in unveiling several latent phenomena of particle-turbulence interaction throughout the flow region. The model can also address various crucial phenomena of velocity and concentration profiles that occur during flow in real situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.