Abstract

One-dimensional cutting stock problem (1D-CSP) is one of the representative combinatorial optimization problems, which arises in many industrial applications. Since the setup costs for switching different cutting patterns become more dominant in recent cutting industry, we consider a variant of 1D-CSP, called the pattern restricted problem (PRP), to minimize the number of stock rolls while constraining the number of different cutting patterns within a bound given by users. For this problem, we propose a local search algorithm that alternately uses two types of local search processes with the 1-add neighborhood and the shift neighborhood, respectively. To improve the performance of local search, we incorporate it with linear programming (LP) techniques, to reduce the number of solutions in each neighborhood. A sensitivity analysis technique is introduced to solve a large number of associated LP problems quickly. Through computational experiments, we observe that the new algorithm obtains solutions of better quality than those obtained by other existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.