Abstract

One of the main targets for Continuous Casting (CC) modelling is the actual prediction of defects during transient events. However, the majority of CC models are based on a statistical approach towards flow and powder performance, which is unable to capture the subtleties of small variations in casting conditions during real industrial operation or the combined effects of such changes leading eventually to defects. An advanced Computational Fluid Dynamics (CFD) model; which accounts for transient changes on lubrication during casting due to turbulent flow dynamics and mould oscillation has been presented on MCWASP XIV (Austria) to address these issues. The model has been successfully applied to the industrial environment to tackle typical problems such as lack of lubrication or unstable flows. However, a direct application to cracking had proven elusive. The present paper describes how results from this advanced CFD-CC model have been successfully coupled to structural Finite Element Analysis (FEA) for prediction of stress-strains as a function of irregular lubrication conditions in the mould. The main challenge for coupling was the extraction of the solidified shell from CFD calculations (carried out with a hybrid structured mesh) and creating a geometry by using iso-surfaces, re-meshing and mapping loads (e.g. temperature, pressure and external body forces), which served as input to mechanical stress-strain calculations. Preliminary results for CC of slabs show that the temperature distribution within the shell causes shrinkage and thermal deformation; which are in turn, the main source of stress. Results also show reasonable stress levels of 10-20 MPa in regions, where the shell is thin and exposed to large temperature gradients. Finally, predictions are in good agreement with prior works where stresses indicate compression at the slab surface, while tension is observed at the interior; generating a characteristic stress-strain state during solidification in CC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.